

8Gbps SFP+ 1550nm 80km Single-Mode Optical Transceiver SFP-8G55-80-xx

Features

- Operating data rate up to 8.5Gbps
- > 1550nm EML Transmitter
- Distance up to 80km
- Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface, Hot Pluggable
- ➤ Compliant with MSA SFP+ Specification SFF-8431
- > Built-in Digital Diagnostic Function
- Compliant with 8.5G FC-PI-4 800-SM-LC-L FC standard
- Compliant with 4.25G FC-PI-4 400-SM-LC-L FC Standard
- Compliant with 2.125G FC-PI-4 200-SM-LC-L FC Standard
- Compliant with 1.0625G FC-PI-4 100-SM-LC-L FC standard
- Operating Case Temperature Standard : 0°C to +70°C

Applications

- ➤ 1000 Base-LX Ethernet
- 8XFC at 8.5Gbps
- 4XFC at 4.25Gpbs
- 2XFC at 2.125Gpbs
- 1xFC at 1.0625Gbps

Description

The SFP-8G55-80-xx series single mode transceiver is small form factor pluggable module for serial optical data communications such as X1/X2/X4/X8 Fiber Channel. It is with the SFP+ 20-pin connector to allow hot plug capability.

This module is designed for single mode fiber and operates at a nominal wavelength of 1550 nm. The transmitter section uses a 1550nm multiple quantum well laser and is a class 1 laser compliant according to International Safety Standard IEC-60825.

The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Specifications

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	3.6	V
Storage Temperature	Ts	-40	+85	°C
Input Voltage	Vin	-0.5	Vcc	٧
Output Current	lo	-	50	mA

Table 2 - Recommended Operating Conditions

Parameter		Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	Standard	Tc	0		70	°C
Power Supply Voltage		VCC	3.15	3.3	3.45	V
Power Supply Current		ICC			300	mA
Surge Current		I _{Surge}			30	mA
Baud Rate		8XFC		8.5		
		4XFC		4.25		Chas
		2XFC		2.125		Gbps
		1XFC		1.0625		

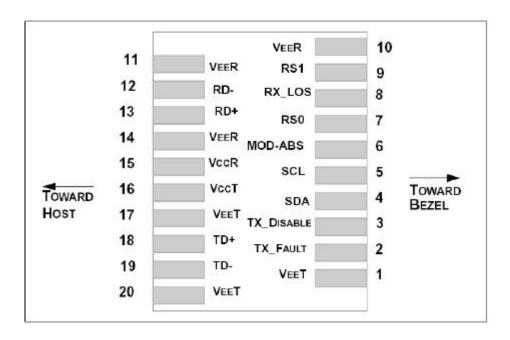
Table 3 - Performance Specifications - Electrical

Table 5 Terrorman	Table 5 - Ferrormance Specifications - Electrical								
Parameter	Symbol	Min	Typical	Max	Unit	Notes			
			Transmitte	•					
CML Inputs(Differential)	Vin	120		820	mVpp	AC coupled inputs			
Input AC Common Mode Voltage		0		25	mV	RMS			
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms@ DC			
Differential Input S-parameter	S _{DD} 11			-10	dB				
Differential to Common Mode Conversion	S _{DD} 11			-10	dB				
Tx_DISABLE Input Voltage - High		2		3.45	V				

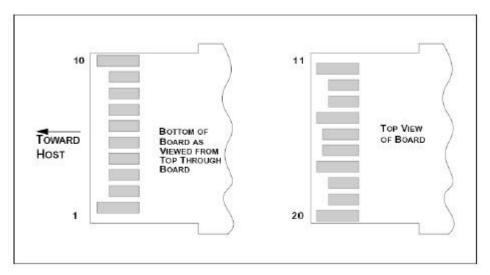
Datasheet

Tx_DISABLE Input Voltage - Low		0		0.8	V		
Tx_FAULT Output Voltage - High		2		Vcc+0.3	V	Io = 400 μ A; Host Vcc	
Tx_FAULT Output Voltage - Low		0		0.5	V	Io = -4.0mA	
	Receiver						
CML Outputs (Differential)	Vout	340		850	mVpp	AC coupled outputs	
Output AC Common Mode Voltage		0		15	mV	RMS	
Output Impedance (Differential)	Zout	90	100	110	ohm		
Differential Output S-parameter	SD22			-10	dB		
Rx_LOS Output Voltage - High		2		Vcc+0.3	V	lo = 400 μ A; Host Vcc	
Rx_LOS Output Voltage - Low		0		0.8	V	lo = -4.0mA	
MOD DEF (2.0)	VoH	2.5			V	With Coniel ID	
MOD_DEF (2:0)	VoL	0		0.5	V	- With Serial ID	

Table 4- Optical and Electrical Characteristics

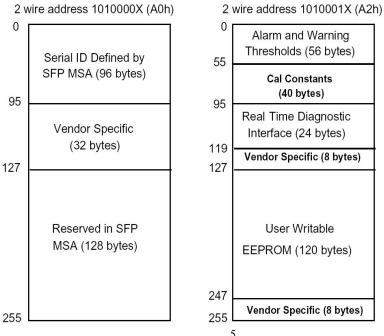

Para	meter	Symbol	Min.	Typical	Max	Unit	Notes
9 μ m Core I	Diameter SMF	-	-	-	80	km	
Data	Rate	-	-		8.5	Gbps	
			Transmitter				
Center W	/avelength	λ _c	1530	1550	1565	nm	
Spectral V	vidth (RMS)	Δλ	-	-	1	nm	
Average O	ptical Power	P _{out}	-1	-	4	dBm	
Extinct	on Ratio	ER	3	-	-	dB	
Average Power of OFF Transmitter		P _{off}	-	-	-30	dBm	
Side Mode Su	Side Mode Suppression Ratio		30			dB	
Input Differer	Input Differential Impedance		90	100	110	Ω	
TX Disable	Disable	-	2.0	-	VCC+0.3		
1 X Disable	Enable	-	0	-	0.8	<u>,</u>	
TX Fault	Fault	-	2.0	-	VCC+0.3	- V -	
IX Fault	Normal	-	0	-	0.8		
TX_Disable Assert Time		t_off	-	-	10	us	
TX_DISABLE Negate Time		t_on	-	-	1	ms	
TX_BISABLE tir	ne to start reset	t_reset	10	-	-	us	

Datasheet


Time to initialize, include reset of TX_FAULT		t_init	-	-	300	ms		
TX_FAUI	LT from fault to assertion	t_fault	-	-	100	us		
	Total Jitter	ŢJ	-	-	0.28	UI(p-p)		
Da	ta Dependant Jitter	DDJ	-	-	0.1	UI(p-p)		
L	Incorrelated Jitter	UJ	-	-	0.023	RMS		
	Receiver							
С	enter Wavelength	λ _c	1530	-	1565	nm		
R	eceiver Sensitivity	Pmin	-	-	-24	dBm		
Receiver Overload		Pmax	-7	-	-	dBm	1	
Optical Return Loss		ORL	-	-	-12	dB		
LOS De-Assert		LOS _D	-	-	-27	dBm		
LOS Assert		LOSA	-35	-	-	dBm		
100	High	-	2.0	-	VCC+0.3	V		
LOS	Low	-	0	-	0.8	V		

Note 1: Measured with a PRBS 2^{31} -1 test pattern @ 10.3125Gbps, BER $\leq 10^{-12}$

SFP+ Transceiver Electrical Pad Layout


Table 5- Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	0 to +5	dBm	±3dB	Internal / External
RX Power	-23 to -3	dBm	±3dB	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring. The digital diagnostic memory map specific data field defines as following.

Pin Function Definitions

Pin	Name	Functiom	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	MOD_DEF(2)	Serial Data Signal	3	2-wire Serial Interface Data Line. Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	2-wire Serial Interface Clock. Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance.
8	LOS	Loss of Signal	3	Note 4
9	RS1	TX Rate Select (LVTTL)	1	This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance.
10	VeeR	Receiver ground	1	Note 5
11	VeeR	Receiver ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 6
14	VeeR	Receiver ground	1	Note 5
15	VccR	Receiver Power	2	3.3V \pm 5%, Note 7
16	VccT	Transmitter Power	2	3.3V \pm 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 \text{K}^{\sim} 10 \text{K}\Omega$ resistor. Its states are:

Low (0 - 0.8V): Transmitter on

Datasheet

(>0.8, < 2.0V): Undefined

High (2.0 - 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Mod-Def 0, 1, 2. These are the module definition pins. They should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is present

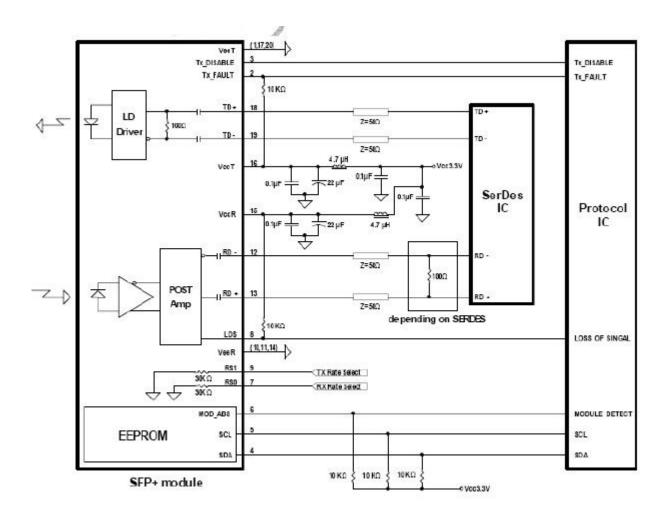
Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

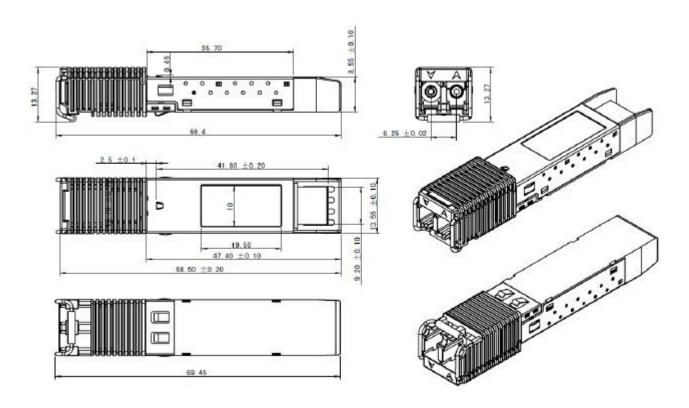
5) The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

1.0625 to 8.5


6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 700 Mv differential (185 –350 Mv single ended) when properly terminated.

7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 300mA. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30Ma greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.

8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 - 1200 Mv (75 - 600Mv single-ended), though it is recommended that values between 150 and 1200 Mv differential (75 - 600Mv single-ended) be used for best EMI performance.



Recommended Interface Circuit

Datasheet

Mechanical Dimensions

Ordering Information

Part No.	Data Rate	Wavelength	Connector	Transmission	Operating case	Digital
	(Gbps)		Туре	Distance (km)	temperature (°C)	Diagnostics
SFP-8G55-80-xx	1.0625 to 8.5	1550nm	LC	80km	0 to +70	Yes

Notes:

xx means compatible brand. (For example: CO= Cisco, JU=Juniper, FD=Foundry, EX=Extreme, NE=Netgear, etc.)

FiberStore U.S.

X205 4181 129th Place SE, Bellevue

98006, WA,

United States

Tel: +1 (206) 453 0158

Fax: +1 (425) 505 2761

FiberStore Hong Kong

1220 Tung Chun Commercial Centre, 438-444 Shanghai Street, Kowloon,

HongKong

Tel: (852) 8120 3582

Fax: (852) 8120 3582

FiberStore China

5D Intelligent Tower, Fumin Road Futian,

Shenzhen 518045, GuangDong,

China

Tel: +86 (755) 8300 3611 Fax: +86 (755) 8326 9395

Addresses, phone number and fax number also have been listed at www.fiberstore.com. Please e-mail us at sales@fiberstore.com or call us for assistance.

All statements, technical information, and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. Please contact FiberStore for more information.